作者单位
摘要
华东理工大学理学院物理系, 上海 200237
研究了传统荧光材料香豆素C545T在激基复合物3DTAPBP/TPBi和非激基复合物CBP/TPBi体系中发光机制, 器件结构为ITO/MoO3/3DTAPBP/C545T/TPBi/LiF/Al和ITO/MoO3/CBP/C545T/TPBi/LiF/Al。 3DTAPBP, CBP和TPBi分别是有机材料2,2’-Bis(3-(N,N-di-p-tolylamino) phenyl) biphenyl, 4,4’-bis(N-carbazolyl)-2,2’-biphenyl, 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl) benzene的简称。 薄膜3DTAPBP, CBP和TPBi的光致发光峰分别为415, 411和380 nm; 异质结薄膜3DTAPBP/TPBi的光致发光光谱有两个发光峰: 412和490 nm, 412 nm的峰可认为是3DTAPBP的发光, 但490 nm的发光既不来自3DTAPBP, 也不来自TPBi, 是3DTAPBP与TPBi界面形成激基复合物产生的发光; 而异质结薄膜CBP/TPBi的光致发光光谱表现为CBP和TPBi发光的叠加, 未产生新的发光峰, 因此CBP/TPBi界面不能形成激基复合物。 把C545T插入激基复合物3DTAPBP/TPBi和非激基复合物CBP/TPBi界面, 器件的电致发光光谱表明发光主要来自C545T。 器件中, C545T与其两侧的材料相互扩散, 形成掺杂体系, 即C545T与3DTAPBP、 TPBi, 或与CBP、 TPBi形成掺杂体系, 掺杂体系中客体发光机制通常有两种: 主体与客体之间的能量传递和客体直接捕获载流子形成激子发光。 在激基复合物3DTAPBP/TPBi体系中, 主体3DTAPBP/TPBi的发光涵盖了客体C545T的激发光谱, 光谱重叠面积大, 且器件的电流密度-电压曲线几乎不随C545T厚度(浓度)的增加而变化, 因此发光机制主要是来自3DTAPBP/TPBi与C545T之间的能量传递。 而在非激基复合物CBP/TPBi体系中, 主体CBP/TPBi的发光与客体C545T的激发光谱重叠面积相对较小, 能量传递较弱, 同时器件的电流密度-电压曲线随C545T厚度(浓度)的增加向高电压方向移动, 说明C545T捕获载流子复合发光, 使得C545T越厚驱动电压越高, 因此非激基复合物体系中, C545T发光机制以直接捕获载流子为主。
光致发光 能量传递 载流子捕获 激基复合物 Photoluminescence C545T Energy transfer Carrier capture Exciplex C545T 
光谱学与光谱分析
2020, 40(12): 3711
Author Affiliations
Abstract
1 National Teaching Center for Experimental Physics, Department of Physics, School of Science, Beijing Jiaotong University, Beijing 100044, China
2 Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
3 Department of Physics, School of Science, East China University of Science and Technology, Shanghai 200237, China
In this paper, a 64 mm×64 mm matrix polymer solar cell (PSC) was fabricated by air-brush spray deposition. Although the open-circuit voltage (Voc) and the fill factor (FF) both need to be improved, the efficiency of matrix PSCs still reaches about 1.82%, and especially the current density achieves nearly 20 mA/cm2. The results verify that air-brush spray deposition is a suitable method to prepare large area PSC devices, and the process we use in this paper can be easily transplanted to roll-to-roll production.
光电子快报(英文版)
2015, 11(4): 244
Author Affiliations
Abstract
1 Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology,Beijing Jiaotong University, Beijing 100044, China
2 Department of Physics, School of Science, East China University of Science & Technology, Shanghai 200237, China
In this paper, bulk heterojunction solar cells with poly-(3-hexylthiophene) (P3HT): [6,6]-phenyl-C61-butyric-acid-methylester (PCBM) as an active layer and modified poly (3,4- ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) as a buffer layer are fabricated. The buffer layer is modified by adding 1% to 5% dimethyl sulfoxide (DMSO) into PEDOT: PSS solution before spin-coating. The conductivity of modified PEDOT:PSS and the performance of solar cells with modified PEDOT:PSS are measured. The highest conductivity of modified PEDOT:PSS with 4% DMSO can achieve 89.693 S/cm. The performance of organic solar cell with PEDOT:PSS modified by 4% DMSO is the best. The 4% DMSOmodified- PEDOT:PSS cell has a power conversion efficiency of 3.34% , Voc of 5.7 V, Jsc of 14.56 mA/cm2 and filling factor (FF) of 40.34%.
光电子快报(英文版)
2012, 8(5): 336

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!